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DIAGNOSIS OF DAMAGE IN SDF STRUCTURES

1.0 Introduction

This report summarizes the results of an investigation in

the diagnosis of structural damage.

The reliability of a structure is the probability that it

will survive and respond to inputs in a satisfactory manner over

a preestablished period of time. If the time through which a

structure is intended to survive is chosen, then the reliability

of a structure can be re-estimated at various times; and the re-

liability may vary as a function of time. At any time, the reli-

ability of a structure is dependent upon the class of inputs to

which the structure will be subjected and the condition of the

structure. If damage in a structure accumulates at a faster rate

than anticipated during the initial reliability estimation, then

its reliability will diminish with time. Repairs can be per-

formed on a damaged structure to increase its reliability.

In view of the potential variability of structural reliabil-

ity and the dependence of reliability on the damage level in a

structure, it is desirable to know how much damage has accumu-

lated in a structure at a given time. When damage occurs in a

structure, it can appear in the form of cracks and permanent

structural deformation.

An indicator of the damage which accumulates in a structure

as the result of structural motion over a period of time is the

energy dissipated by the structure during that time. Therefore,

we wish to estimate this quantity. Particularly, it is important

to estimate the energy dissipated in a structure as it responds

to strong motion excitations, for this type of response causes

the greatest damage. The energy dissipated by a structure re-

sponding to strong motion excitation is dissipated due to the



hysteretic behavior of the structural material. The equations

governing the hysteretic structural response of a lumped mass

system are second-order, nonlinear, ordinary differential equa-

tions with history-dependent stiffness terms.

In the present investigation, it is assumed that the hyster-

etic response of a lumped mass system is approximately governed

by a higher-order, linear, ordinary differential equation. This

assumption is motivated by studies summarized in the literature.

For example, Wen [1]* and Baber and Wen [2,3] have used a third-

order, lirear, ordinary differential equation to approximately

govern the response of a hysteretic single-degree-of-freedom

(SDF) system to white noise and non-white stationary random in-

puts; and they have used a system of third-order, linear, differ-

ential equations to approximately govern the response of hyster-

etic multi-degree-of-freedom (MDF) structures. Their results

show that the higher-order linear system provides an acceptable

model for the hysteretic system. Lutes [4] used linear, third-

and fourth-order equations to approximately govern the response

of an SOF hysteretic system. His results show that the spectral

density of the hysteretic structural response can be matched by

the linear systems; in addition, the buildup of structural re-

sponse in the hysteretic system can be matched by the higher-

order linear systems. Another study by Wafa [5] showed that the

peak response executed by a hysteretic SOF system excited by an

earthquake-type input is closely predicted by a third-order,

linear, equivalent system.

The purpose of the present investigation is to show that the

parameters of a linear, higher-order, differential quation, ap-

proximately governing the response of a hysteretic SDF system,

can be estimated using system identification techniques. The

*Numbers in parentheses refer to a list of references appended to

this report.

2



parameter identifications will be based on measured input (forc-

ing) and output (response) data. Parameter identification for

the linear system must be attempted when the measured input and

output signals are noisy, since some noise is present in all

measured signals. Therefore, system identification techniques

which can be used successfully in the presence of noise will be

demonstrated.

The reason for pursuing the system identification study sum-

marized in this report is to characterize the linear system

equivalent to the hysteretic system in which the damage has oc-

curred. Once the linear system parameters are known, the energy

dissipated by this system can be computed. It is hoped that the

energy dissipated by the higher-order, linear system is an accu-

rate estimator of the energy dissipated by the actual hysteretic

system. This study addresses the question of energy dissipated

by these two types of systems.

This report covers the following subjects: 1) The system

used to model a hysteretic SOF system is presented. This model

is a higher-order, linear, differential equation. 2) The param-

eter identification technique is given. Least-squares parameter

identification is used in the frequency domain and in the time

domain. 3) Analysis of errors arisinq from the presence of noise

in the measured inputs and outputs is presented. 4) Several nu-

merical examples are summarized. 5) Discussion and conclusions

are given.

2.0 Model for Hysteretic SDF System

The differential equation governing the response of a mass

excited, potentially-hysteretic, single-degree-of-freedom (SDF)

structure is

mz + u : f (2.1)



where m is the structure mass, f is the forcing function, z is

the displacement response of the mass, dots dJ..note differentia-

tion with respect to time, and u is the restoring force of the

structure. In actual systems which can be realistically modeled

using Equation 2.1, u can be a complicated function. When the

system displacements are small, u can reasonably be taken as a

linear function of the displacement and velocity; but when the

displacement and velocity become large, u may be a function gen-

erating system hysteresis and whose characteristics possibly vary

with time.

In analytical studies, u is modeled as a linear function of

displacement and velocity when these quantities are small, and,

sometimes, when they are large. When an effort is made to ac-

count for system hysteresis accurately, u is taken as a function

of time and the response history. For example, when a system has

bilinear hysteretic stiffness, its graph of restoring force ver-

sus system displacement might resemble the curve shown in Figure

2.1a. A column made from elasto-plastic material, with rectangu-

lar cross section, and responding in bending will have a restor-

ing force versus displacement graph like the one shown in Figure

2.1b.

We propose that the response of a system governed by Equa-

tion 2.1 be modeled using the equations

m+ u = f

M (2.2)
uO -c4, z +zci u M+1

j=O

where the cj, j=O, ... M+1, are constants governing the system-

restoring force characteristics, u(J) denotes the jth time de-

rivative of u, and M is a constant denoting the order of approxi-

mation of the linear system to the hysteretic one. This model is

4
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Figure 2.lb. Spring restoring force versus displacement for
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chosen to represent the hysteretic system because it displays

hysteresis; moreover, it is hoped that with the proper choice of

cj, j=O, ... M+1, the response of this system will accurately

approximate the response of the actual system.

Note that when M is chosen to be 0, the model in Equation

2.2 becomes

Clmy + L f (2.3)

This is simply the linear differential equation which approxi-

mately governs the response of an SDF system whose response am-

plitude is small. The restoring force function for this system

is u = (cl/co) i + (1/c0 ) z. This system displays an energy dis-

sipation characteristic due to viscous damping. For example, the

linear system whose parameters are listed in Figure 2.2a produces

the restoring force versus displacement graph shown in Figure

2.2a when the system is subjected to the harmonic force input

whose form is given in Figure 2.2a. The parameters of the model

in Equation 2.3 can be chosen so that the model represents the

hysteretic system as well as possible, in some sense. When the

response of the actual system is linear and damping is viscous,

the model of Equation 2.3 perfectly represents the actual sys-

tem.

When the constant M is chosen as 1 in Equation 2.3, the

model becomes

mz + u =f

c0u + C1u = c2z + z (2.4)

The restoring force is the solution of the second equation. This

system can display an energy-dissipation characteristic. For

7
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example, the linear system whose parameters are listed in Figure

2.2b produces the restoring force versus displacement graph shown

in Figure 2.2b when the system is excited by the harmonic input

whose form is given in Figure 2.2b. The parameters of the system

in Equation 2.4 can be chosen so that the model represents a hys-

teretic system as well as possible, in some sense. When the

actual system response is linear and the system has viscous damp-

ing, we anticipate that cl = 0.

It is anticipated that as the order, M, of the model in

Equation 2.2 is increased, the response of a hysteretic system

can be matched with increasing accuracy. However, for practical

reasons involving estimation accuracy for system parameters, very

high order linear system models cannot be used to simulate hys-

teretic system behavior.

Before considering the problem of parameter estimation for

the system of Equation 2.2, note that we anticipate calculating a

set of parameters with values in a specific range. For example,

when M=O and Equation 2.3 is the model for system response, we

anticipate finding values 1/co > 0 and cl/c o > 0 (i.e., co > 0

and cl > 0). These values guarantee that the model has positive

stiffness and damping, as we know the real system must. When M-l1

and Equation 2.4 models the system response, we anticipate find-

ing values co > 0, cl > 0, and c2 > 0. These values guardntee

that the model response will be stable.

The energy dissipated by the systems described in this sec-

tion can be computed using Equation 2.1 or 2.2. In the terms of

Equation 2.1, the energy dissipated by a system is

z(T)

ED = u dz (2.5)

z (o)

9
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where z(O) is the system displacement at time 0, z(T) is the sys-

tem displacement at time T, and T is the time through which the

energy computation is executed. This formula provides the area
enclosed in the hysteresis loops generated by the system re-

sponse. For example, Equation 2.5 could be used to compute the

area enclosed by the hysteresis loop of Figure 2.1b. This equa-

tion can be transformed into terms more convenient for computa-

tion. Note that the integral of Equation 2.5 is written in terms

of the displacement variable z. The variable of integration can

be transformed to a time variable yielding the following expres-

sion.

ED = u z dt (2.5a)

0

Finally, Equation 2.1 can be used above to obtain

ED J (f - mz) z dt (2.5b)

When the input and response for an SDF system are measured,

Equation 2.5b can be used to directly compute the energy dissi-

pated by a system. When the response is computed, for example by

solving Equations 2.4, then the input and system parameters are

used to find z and its derivatives. The input, f, and computed

response, z, are used in Equation 2.5b to determine the energy

dissipated.

Numerical examples where we compute the parameters of linear

systems equivalent to bilinear, hysteretic systems are presented

in Section 5. In these examples, the energy dissipated by each

system is computed and the results are compared.

11
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3.0 Identification of Parameters

We now consider the problem of parameter identification for

the linear model for hysteretic single-degree-of-freedom (SOF)

systems introduced in the last section. Both the time and fre-

quency domain approaches to the problem of parameter identifica-

tion are outlined. We consider the parameter identification both

when noise is and is not present in the measured data.

Measured input and output data from a structural system are

used to estimate the system parameters. It is assumed that these

data are available. To begin with, we assume that no noise is

present in the measured data. Later, modifications are made to

permit the inclusion of noise. The input, or forcing function,
data are available in discrete form and are denoted fl, 1=0,

... n-1. The output, or system response, data are available in

discrete form and are denoted zt, Z=0, ... n-1. It is assumed
that the input and output signals have been sampled at times tX

= At, X=0, ... n-1. Note that measured response data are as-

sumed to be given as accelerations; this is realistic since

structural response acceleration is often the quantity measured

during an experiment.

The approaches to parameter identification developed in this

section do not require that the measured data be indexed by

time. Any sampled sets fL and z, z=0, ... n-1 can be used.

However, since the present applications come from the field of

structural dynamics, we will refer to signals sampled in time.

The model established in Equation 2.2 is repeated here; it

is

mz + u = (31
~(3.1)

cu M)  z + z

j=0

12



When the first of these equations is solved for u and the result-

ing expression is used in the second equation, we obtain

l__ CM+ 1 z
j (f(J) + mz(j+2)) = f - mzc c to 0 + o j=1

(3.2)

where f(J) is the jth derivative of f, and z(j+ 2) is the (j+2)th

derivative of z. (This particular arrangement is chosen since

co should never be 0 for the systems under consideration.) The

notation in this equation can be simplified by taking

cM+1 cj
ao = 1_1, a+ -j=1, ... M. (3.3)
a0  ' 1 c 0 j+i c'

The equation governing motion of the system becomes

M

az+j al + aj+I (_f(J) + mz(j+ 2 )) = f - .
j=1

(3.4)

This equation can be used, along with the measured input and re-

sponse data, to identify the parameters aj, j=O, ... M+I. When

these are known, Equation 3.3 can be used to find the cj, j=O,

M+1.

3.1 Time Domain Approach I

Let zt, it, and zz(j ) , t=09 ... n-i, be, respectively, the

response displacement, velocity and jth derivative of the dis-

placement at time, t , =0, ... n-1. Let f{ and f (J), t=0,

n-i, be the force at time tt, t=0, ... n-i. Assume that

all required integrals and derivatives of c and z can be

13



obtained, exactly. Then Equation 3.4 can be written at time tZ

as

M

aOz; + aizt + a+1(-f( mz ) I M L=u, ... n-i

(3.5)

The notation in this equation can be simplified by defining

{z~J = (z~ z~ -L + twig . 1 (M) + mz (M+2)) T z=0 ... n-1z. =(z£ X - +, ...

(3.6a)
Ti

{a} (a0  a, ... aM+1)

(3.6b)

where the T superscript refers to matrix transposition. Use of

these expressions in Equation 3.5 yields the relation

{Z} T {a} = fL" mzi 2=0, ... n-1 (3.7)

This is the equation governing the linear system response at time

to.

The notation can be further simplified by defining

{Zo I T  fo mo
f0  -m 0

[Zf= {z} f 1 di1 (3.8)

{Zn-1  f n-1 m -I

Using these expressions, the sequence of Equation 3.7, for x=0,

n-i, can be written

14



[Zf {a } = {fz} (3.9)

This equation governs the linear system response at all times.

When 1) the mechanical system from which the data were mea-

sured is truly linear, 2) there is no noise in the data measure-

ments, and 3) the derivatives and integrals of f and z', L=0,

n-1, are known exactly, Equation 3.9 can be satisfied exactly

by the measured data and a set of coefficients, aj, j=O, ...

M+1. Otherwise, the left-hand side of Equation 3.9 will not

exactly equal the right-hand side at every time, te. We define

the error vector as follows.

{ (CO C, ... )T (3.10){z} (g €l "" n-1)

- [Zf] {a} - {f}

The elements e£, £=0, ... n-i, quantify the data nonlinearity,

the measurement noise, and the inaccuracy of the derivatives and

integrals of and f., as a function of the system parameters,

{a }.

An overall measure of the lack of fit of the measured data

to the model in Equation 3.9 is established in the parameter

el = {IT[r, = ({a T[zfJT_ {fz}T) ([Zf]{a}- {fz )

(3.11)

This is referred to as the squared error between the measured

data and the system model. This error can be minimized through

the proper choice of the parameter vector {a}. The vector {al
which minimizes e2 is

-I

fa} = ([zf]T[zf]) [Zf]T{f} (3.12)

15

...... ~~~~~~~~~~~. . ..-.. _. .,,. -- ;.., :.. -.............



(See, for example, Reference 6.) The parameter vector chosen

above is the best estimate of the system parameters in a

least square sense.

If the quantity, e2/n, is small relative to the signal dif-

ference, fI - mz, X=O, ... n-1, then the model of Equation 3.4

with parameters obtained using Equation 3.12 accurately repre-

sents the measured system. If this is not true, then the model

of Equation 3.4 is inadequate.

e2 will equal zero if the measured system data are noise

free, the system is linear, and the computed derivatives and in-

tegrals of the data are exact. Failure to meet any one or more

of these requirements will cause e2 to be nonzero. In practice,

the parameter identification procedure outlined above can only be

used effectively when there is little or no noise in the measure-

ments, the system is nearly linear, and the integrals and deriva-

tives of z and f can be obtained accurately. The method is par-

ticularly effective when the parameter M is set to 0. However,

when noise is present and M=1, the procedure loses accuracy since

derivatives of Y and f are required. Particularly, the functions

z'and f must be estimated. If the measured raw data, z and

f, t-=0, ... n-i, are used directly to obtain these estimates

through numerical differentiation, the estimates of Z and f may

be very poor due to amplification of the effects of noise and in-

accuracy of numerical differentiation. In view of this, alter-

nate procedures for parameter identification in the presence of

noise must be established.

It is possible to retain a time domain approach in the pa-

rameter estimation problem. For example, the signals zt and

fl, 1=0, ... n-1 can be smoothed prior to the taking of deriv-

etives. Smoothing can be accomplished through the use of digital

filters; or the governing Equation 3.4 can be integrated M times

16
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before applying the identification procedure. Then no numerical

derivatives are required. Alternately, a frequency domain ap-

proach can be used. This eliminates the necessity to directly

differentiate measured data. In the present study, we pursue the

approach using the integrated equations of motion and the fre-

quency domain approach. First, we consider the time domain ap-

proach using the integrated equations of motion.

3.2 Time Domain Approach II

Consider again Equation 3.4. That equation establishes the

assumed form for the governing equation of motion of a hysteretic

SDF system. The direct use of that equation in a parameter iden-

tification scheme requires the calculation of z(M+2)(t), the

Mth derivative of z(t). The numerical computation of derivatives

is an operation which is generally sensitive to the presence of

noise in measured signals; therefore, we employ the following

procedure. Integrate both sides of Equation 3.4 M times. We

obtain

M

a0yM + alYM-I + a,+, (-gM-j + mYM-j- 2) 
= M myM-2

j=1

(3.13)

where y.2(t) = '(t)

t
yj(t) = fo Yj-I (T) dr j=-1, ... M

g0 (t) = f(t)

ft
gj(t) = gj-l (T) dT j=1, M.

0
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It is assumed that the initial values of z(t) and f(t) and their

derivatives are zero. Equation 3.13 involves i(t) and its first

M+2 integrals, and f(t) and its first M integrals. When z(t) and

f(t) are measured, these can be calculated numerically.

A parameter identification can now be executed using Equa-

tion 3.13. As before, it is assumed that "i(t) and f(t) have been

measured at discrete times, tt = tAt, t=0, ... n-1. The inte-

grals of "i(t) and f(t) can be directly computed at the times

ti. At time t=t , yj(t) is denoted Yj,,' gj(t) is denoted gj,,

and Equation 3.13 becomes

M
a0yMz + alYM-,j + a -gM-j,t + mYM-j- 2,x) gM,.- myM-2,t

j=1

1=0, ... n-1

(3.14)

This equation governs the SOF system at each time t. The no-

tation for the collection of equations described in 3.14 can be

simplified by defining the matrices

{a} = (a0 a1  ... aM+I)T

(3.15a)

YM,0 YM-1,0 (gM-1,0 +mYM-3,0 ) ... ('go,0 +mY-2,0)

[Zfl YMI YM-II (-9M-1,1 +mYM-3,1 ) ('go,1 +mY-2,1)

_* . /
iL YM,n-I YM-I,n-I (gM-l,n-1+mYM-3,n-1) ""('g0,n-1+mY-2,n-1)

(3.15b)

z= ((gM,0- m-M-2,0) (gM,I myM-2,1 ) ... (gM,n- Y 2  1))

(3.15c)
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In terms of these matrices, Equation 3.14 can be expressed

[Zf] {a] = {fz (3.16)

This equation has the same form as that used in the parameter

identification problem for Equation 3.4, but the matrices [Zf]

and {fz} have been defined differently. When 1) a physical

system is exactly governed by the (M+2)th order Equation 3.1, 2)

there is no noise in the measurements of z(t) and f(t), and 3)

the integrals of z(t) and f(t) are computed exactly, Equation

3.16 can be satisfied exactly by the measured data and a collec-

tion of coefficients, aj, j=O, ... M+I. However, when these

requirements are not satisfied, Equation 3.16 will not hold,

exactly. Then the equation

{l} = [Zf] {a}- {fz} (3.17)

will hold, where { j is an error vector which reflects the degree

to which the above requirements are not satisfied. As before,

the sum of the squares of the components in {} is minimized by

choosing

{a} = ([Zf]T[Zf]) "1 [Zf]T{fz} (3.18)

When the elements in {fe are relatively small, Equation 3.1

provides a satisfactory model for the system under consideration

and the vector {a} includes the parameters of that model.

The advantage to the present approach to parameter identifi-

cation is that the derivatives of i(t) and f(t) need not be com-

puted via numerical differencing. This is a practical improve-

ment since all measured signals contain at least some noise.

Beyond this, the operation of numerical differencing introduces
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so much inaccuracy into a computation that parameter identifica-

tion is difficult, even when the signals contain no noise. The

use of Equation 3.13 replaces the requirement for differentiation

with an integration requirement. When the measured signals are

noisy, their integrals are influenced by the presence of noise;

but the noise influence is less than in the case of differentia-

tion. In Section 4, the effect of noise on parameter identifica-

tion will be discussed.

3.3 Frequency Domain Approach

The final approach we will consider for the identification

of the parameters of Equation 3.4 is a frequency domain ap-

proach. Consider Equation 3.4. Both sides can be Fourier trans-

formed to obtain

M
a 0 Z(w) + a1 iwZ(w) + a,+, (-(iw)JF(w) + m(iw)J+2Z(w))

j=1

= F(w) + mw2Z(w) -< w < - (3.19)

w

where Z(w) = z(t) e-Wtdt -, < w < - K

F(w) = f(t) e-iWtdt -- < w <

are the Fourier transforms of z(t) and f(t), respectively. This

equation can be rearranged by grouping the coefficients of Z(w)

and F(w), then combining Z(w) and F(w) on one side of the equa-

tion.

20



M

.w2+80, +8 a(iw) + m a,+(iw)j+2

j=1 -~ ) <

j=1

(3.20)

Finally, each side of the equation can be multiplied by its corn-

plex conjugate to yield the modulus squared.

M

mw 2 a8 + a1(iw) + m a (i)+I

M jJ 29

1i + a+1 (iw)j21 2
j=1

(3.21)

When this expression is evaluated at w =wk, the result is

M

I-mwk 2 + a. + al(iivk) + m aj+l (iwk )j+2 12 IFj2
Mj =1 2k Pk=kO n.

F. + ~j+l(wk)jl Ik

(3.22)

where I'kI2/IZkI has been set equal to Itisasue ta
the estimates for the Fourier transforms of i(t) and f(t) can be

obtained by using the discrete Fourier transform (OFT) of i
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and ft, t=O, ... n-1. Then these estimates will be available

at the frequencies wk = 2wk/nat, k=O, ... n/2. The DFT can be

efficiently obtained using the fast Fourier transform (FFT) pro-

cedure. (See, for example, Reference 7). The DFT of zj, x=O,

n-1, is assumed to be -Wk Zk, k=O, ... n/2. Zk and Fk, k=O,

... n/2, represent the DFTs of z(t) and f(t) at frequencies wk,

k=O, ... n/2.

When 1) the system under consideration is linear and or

order M+2, 2) all measurements are noise free, and 3) the DFTs of

z and f.' L=O, ... n-1 used in Equation 3.22 are exact, Equation

3.22 can be satisfied exactly by the measured data and a set of

coefficients, aj, j=O, ... M+1. When these requirements are

not satisfied, Equation 3.22 cannot be precisely satisfied. In

this latter case, we consider the equation

M 2
2mw +8mapj+2

I-mwk2 + ao0 + al(iwk) + m 1Eaj + 1 (iw k j
j=1 nM 2 =Qk + ek' k=O,. ..-7

1 + =a j+l(iwk)J

(3.23)

On the right-hand side Ek is an error term. This term measures

the degree to which the model of Equation 3.4 represents or fails

to represent the measured data, when the measured data are used

to compute Fk and Zk, k=O, ... n/2. We wish to find the co-

efficients aj, j=O, ... M+1, which minimize the ck, k=O,

n/2. This can be accomplished using a least-squares criterion

where a sum Z~k 2 is minimized. This can be done numerically by

searching through the space of (M+2)-tuples created by the coor-

dinates a., ... a For example, a graiient search technique

can be used to find the minimum. When M is chosen as 0 or 1 and
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when the system to be analyzed has a response which is only mod-

erately nonlinear, then a simpler technique for choosing the best

aj, j=O, ... M+1, is available. Consider first the case where

M=O. When M is chosen as zero, Equation 3.4 becomes the equation

of a linear, second-order, SDF system. The equation to be used

in the parameter identification, Equation 3.23, can be written

2
I'mwk2 + + a iw = e k=O, ... n/2 (3.24)

The left side of the expression can be expanded to yield

(a0 - mwk 2)2 + (aWk) 2 = 0k + £k, k=O, ... n/2 (3.25)

The functional expression on the left-hand side assumes its mini-

mum when w takes the value

w (a0 - ) (3.26)

Note from Equation 3.4 that ao is the equivalent stiffness and

a, is the equivalent damping for a system whose Equation 3.4

model uses M=O. In view of this, whenever the equivalent damping

factor is much less than 1 (say less than 0.2), a1
2/2m is small

compared to ao. (This will be true in most cases.) In this

case, ao can be estimated by noting the frequency where Qk +

ek, k=O, ... n/2 is a minimum. Denote this frequency wm and

use it in Equation 3.25 to show that

a0 =21m 2 (3.27)

To obtain improved accuracy, the frequency where Qk + eks k=O,

n/2 is a minimum can be estimated by using the least-squares
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approach to fit a parabola to the values Ok + ek near the char-

acteristic frequency, wi.The parameters of this parabola can

be used to determine the frequency where Qk + Ek is a minimum.

Estimation of the constant ao by any means must assume that no

quality in ck, k=O, ... n/2, will tend to move the minimum

value of Qk, k=O, ... n/2, in a systematic way. The general

character of ek, k=O, ... n/2, will be discussed and modeled in

Section 4.

The motivation for using the above analysis to estimate ao

is clarified by the following considerations. The characteris-

tics of an SDF system are reflected in the system behavior at all

frequencies ,ut are best interpreted from its behavior near the

characteristic frequency. (For strictly linear response, we

would refer to the natural frequency, but the response considered

here is not always linear.) The frequency band including the

characteristic frequency is that band where the system amplifies

the response, and in this band the values of Qk, k=O, ... n/2,

form a trougn. This is the reason why the minimum value of Qk

+ Ek, k=O, ... n/2, is considered, above.

The estimated value of a0 can now be used in Equation 3.25

to obtain

2 2 2 2 2r2(Wm - wk2) + (alwk) =Q + £k' k=O, ... n/2 (3.28)

Now, in order to estimate a,, we can employ a least-squares cri-

terion. Specifically, we solve Equation 3.28 for ek, square

this expression, and sum over all or part of the values of k.

The resulting expression is denoted £2. This quantity is mini-

mized with respect to a1
2 by differentiating C2 with respect to

a,2 , equating the result to zero, and solving for a1 . The opera-

tions listed above yield the result
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-1 2 1/ 2

a, = {( Wk4) "[Qk " m2 (Wm2 - Wk) ]Wk2'

k k

(3.29)

The sums in Equation 3.29 are listed simply as sums over k. In

the identification process, these sums should be taken over those

frequencies near the characteristic frequency of the SDF system.

These are the frequencies where the ratio FkI12/ KI12 best char-
acterizes the properties of the SOF system. For example, the

values of k used in the analysis might be chosen as those corre-

sponding to the frequencies, wk, falling in the interval which

is twice the bandwidth of the SDF system under consideration. Of

course, this band of frequencies will not be precisely known

since the system parameters have not been identified. However,

it can be estimated as the frequency band (Wk, Wk). wk is the

lower frequency where JFj 1JZk1 2 is about five times as great

as the minimum value of IFkl 2/iZkl 2 . Wk is the higher frequency

where. ,Fk /Zk2 12 is about 5 times as great as the minimum

value of Fkr2IZk j
The constants a0 and a,, expressed in Equations 3.27 and

3.29 provide the parameters for a second-order model for an SDF

system. This model is the best available in a least-squares

sense. Note again that the means used to obtain a0 assumes rela-

tively low damping.

Some may consider it undesirable or inaccurate to model a

hysteretic SDF system using a second-order, linear ordinary dif-

ferential equation, as we do with Equation 3.4 when M=O. With

the hope of obtaining improved accuracy, we can model the SDF

system under consideration using Equation 3.4 with M=1. Note

first, though, that 1) improved accuracy in every sense may not

be obtained using M=1. This is, using M=1 in Equation 3.4 only
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guarantees that the parameters aj, j=0,1,2 will yield a more

accurate match between the motion response of the model and the

measured response; the energy dissipation characteristics of the

model system may not be more accurate. 2) The linear viscous

damping term used in most linear system analyses does not pre-

cisely model real system behavior, even when the real system has

small displacements. Yet, linear viscous damping is freely used

in analyses.

When M is chosen as 1 in Equation 3.4, the formula to be

used in the parameter identification is Equation 3.23 with M=1.

This is

I'mwk + a0 + al(iwk) + ma2(iwk)
I +a2(iK2= Q + £k' k=O, .. n/2.

1 1+ a 2(iwk)I 
E

(3.30)

The numerator and denominator can be expanded on the left side to

obtain

22 2 2 2

(a 0  mwk ) + Wk (aI mwk  a 2 )

+2  = Qk + k' k=O, ... n/2.+ (a wk

(3.31)

When a2 is small compared to the characteristic frequency, wm

of the SOF system (say a2 < 0.3 wi), the (a2wk)
2 term in the

denominator can be neglected. This is usually the case when non-

linear deformations are not too large. When a, and a2 are small

compared to a0 (which is usually the case) the minimum of the

left-hand side occurs near the frequency
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w =M ai__ (3.32)

We find this frequency by scanning Qk + Ek, k=O, ... n/2, or

by using the curve fitting technique discussed above. This fre-

quency is denoted wm . In terms of wm , a0 can be written

a0 = MWm 2  (3.33)

This expression and the previous assumptions can be used in Equa-

tion 3.31 to obtain

m2 (Wm2  2 W

k Wk ) + - =k a2  Qk + Y k-0, ... n/2

(3.34)

When mwm 2a2 is relatively small compared to a,, the second term

on the left side of Equation 3.34 can be expanded, and the

mzwk4a 2
2 term can be neglected. This is possible when the

amount of yielding in the system to be modeled is not too great.

The result of this operation is

2
2 2 22 2(2 2

m2(wm Wk) + Wk (al 2mwk ala 2) Qk + ek, k=O, ... n/2

(3.35)

Finally, we can set

al2 = b I and a1a2 =b 2  (3.36)

to obtain

Wk 2(bl - 2mwk2 b2 ) (Qk m2(wm - Wk) ) = ek, k=O, ... n/2

(3.37)
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The system parameters, a, and a2, can now be identified as those

which minimize the sum of the squares of the Ek terms in Equa-

tion 3.37.

A notational simplification can be achieved for the sequence

of Equations 3.37 by defining

{bl = (b1  b2 )T (3.38a)

2 4Wk12 _mk

w 2 -2mw 4k

[X k+1 k1+1 (3.38b)

w 2 42mwk4

22
k m2(Wm2 _ wk2) +

211
2 2 -w 2 2

-k m2(w-Wk)

{c} = (ek ck +1 "" ek )T. (3.38d)
1 1 2

Note that here, as in the identification of the parameters of the

second-order system, only a portion of the Equations 3.37 will be
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used in the parameter identification. In particular, the identi-

fication is performed in the frequency range (Wk, Wk) " This

frequency range can be chosen as before, using the guidelines

presented following Equation 3.29. In terms of these matrices,

Equations 3.37 can be expressed

[X] {b} - {X2 } = {fe} (3.39)

We wish to find the vector {b} which minimizes the constant c
2

{e}T{}. It can be shown (see, for example, Reference 6) that

this is

{bI = ((XI]T[XI]) [xI]T X21 (3.40)

When b, and b2 have been computed, a, and a2 can be found from

a1 = I' a2 = b2/al (3.41)

The constants a0 , a,, and a2 , defined in Equations 3.33 and

3.41, are the parameters of the third-order linear system, Equa-

ton 3.4, whose response best matches the hysteretic response

i(t), defined earlier in this section.

Some numerical examples are presented in Section 5. These

demonstrate the use of all the parameter identification tech-

niques outlined above. Moreover, the examples compare the energy

dissipated by the equivalent systems of Equation 3.4 to the en-

ergy dissipated in some actual nonlinear systems.

4.0 Error Analysis

In the previous section, two techniques used t) establish

the model parameters for hysteretic s1stems were presented. Both

time domain and frequency domain approaches for pardmeter estima-

tion were outlined. At various points in Section 3, allusions to

the potential for presence of noise in the measured input and
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output signals were made. The approaches chosen for use in pa-

rameter identification were chosen for their capacity to accu-

rately estimate system parameters in the presence of noise.

In this section we show how an approximate analysis of the

accuracy of the estimated parameters can be executed, when the

parameters are estimated using the frequency domain approach.

The presence of noise in the measured inputs and outputs affects

this accuracy.

In this analysis, the following assumptions are made. 1)

There exists in nature a true input, f(t), and a true structural

response, z(t). These functions possess exact derivatives and

integrals, and if these were known, then any of the parameter

identification techniques given in Section 3 could be used to es-

tablish the parameters in the model, Equation 3.4, exactly. 2)

The measured structural input and response may contain a noise

component, in practice. When noise is present in a measured in-

put or response, it appears as an additive term. When noise is

present in the measured input or response, it is zero-mean,

normally-distributed, band-limited white noise. Noise signals

added to the input and output are independent. When the struc-

tural input and output signals are discretized at a time interval

of At, the cutoff frequency for the noise signals is 1/2At

hertz.

In the error analysis to follow, we will explicitly consider

the effects of measurement noise on parameter identification.

The effects of nonlinearity of the measured system response, and

accuracy of the Fourier transform will not be considered.

Recall from Section 3 that when the frequency domain ap-

proach is used to estimate the parameters aj, j=O, ... M+1,

these parameters may be estimated using a two-step procedure. In

the first step, a0 is estimated, and then the remaining param-

eters, aj, j=1, ... M+1, are estimated. a0 is estimated by
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noting the minimum value in Qk + Ek, k=O, ... n/2, where Qk

is defined

k=O, ... n/2 (4.1)

We now consider the effect that the presence of noise on the in-

put and output have on Qk.

In zection .. it was stated that the input forcing function

2=0, ... n-1 and the response acceleration, z2 , x=0. ... n-1

are assumed known. When the measured forcing function and re-

sponse include noise, these functions become f2 + n,, 1=0,

n-i, and i + sZ, X=0, ... n-1, respectively. nX and sx, Z=0,

n-i, are the input and response noise random processes.

These are, as stated above, zero-mean, normally-distributed,

white noise, random processes. These are discrete time random

processes. The white noise assumption implies that all random

variable n,, n are independent for t*r; sR and sr are indepen-
rX r

dent for z r. The random processes nj, 1=0, ... n-i, is

independent of st, =0, ... n-i. The variances of the random
2 2processes n and sI, x=0, ... n-1 will be denoted an and as2

respectively.

Since n and s, 2=0, ... n-1 are normally-distributed, ran-

dom processes, they are fully characterized by their first- and

second-order moments. The mathematical expressions which sum-

marize the assumptions listed above follow. The zero mean as-

sumption is expressed

E[n2 ] = E[s.,] =0, x=O, ... n-1 (4.2)

where E[.] refers to the operation of expectation. The autocor-

relation functions of the random processes nI and s , X =0,

n-1 reflect the white noise assumption. These are
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E[nlIfnr= n2 6 , , r=O, ... n-1 (4.3a)

E~siL Sr] as2 air 9 x, r=O, ... n-I (4.3b)

where 6ir is the Kronecker delta.

To execute a frequency domain analysis, we must find the

discrete Fourier transforms (DFT) of f + n and zX + sX, t=O,

n-1. The DFTs of f and z, =O, ... n-i, have been ex-

pressed Fk and -w2Zk, k=O, ... n/2, respectively. The DFTs of

ni and si, x=O, ... n-i, are defined

n-1

Nk = at e-i2;nX k/n, k=O, ... n/2 (4.4a)

n-1

Sk = At 1 X e-i 2  kn, k=O, n/2 (4.4b)

Z=0

The sequences Nk and Sk, k=O, ... n/2, form normally distrib-

uted random processes since each of the values Nk and Sk, is

a linear function of a sequence of normally-distributed random

variables. In view of this, Nk and Sk, k=O, ... n/2, can be

fully characterized in terms of their first- and second-order

moments. Those are listed below.

Each of the random variables, Nk, Sk, is a complex quan-

tity, and possesses a real and an imaginary part. In terms of

these, Nk and Sk can be expressed

Nk = NRk + i Nik k=O, ... n/2 (4.5a)

Sk = SRk + i SIk k=O, ... n/2 (4.5b)
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Since the underlying random processes, n,, sx, t=O, ... n-i,

have zero mean, and since the DFTs are linear functions of these,

the DFTs have a zero mean.

E[NRk] = E[NIk] 0 (4.6a)

E[SRkI = E[SIkI = 0 (4.6b)

The correlation functions for NRk and Nik can be generated from

the formulas

n-1 n-1

E[Nk N = At2LE "E[n, ns] e-i
2 (kt + rs)/n

non2 At2 k = r = 0
(4.7a)

0 otherwise

n-1 n-1

E(Nk Nr*J At2I I E[nt ns] e- 2n(kL- rs)/n
1=0 s=O

Jnon2 at2  k r (4.7b)I 0 k r

Using Equation 4.5a, we can form E[Nk Nr] and E[N k Nr* ]. The re-

sults can be equated to Equations 4.7a and b. This yields

nan 2 At2/2 k = *

E[NRk NRrI = nan2 At2  k = £ = 0 (4.8a)

0 k
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non2 At 2/2 k = ,0

E[NIk NIr] = 0 k = = 0 (4.8b)

0 k

E[NRk Nir = 0 all k, . (4.8c)

Similarly, we can show

nos 2 At2/2 k =* 0

E[SRk SRr ] = At2 k = it 0 (4.9a)

0 k x

inas At2/2 k = x * 0

E[Slk Slr] = k = = 0 (4.9b)

0 k x~

E[SRk Sir ] : 0 all k, ie (4.9c)

These moments completely summarize the random processes Nk and

Sk , k=O, ... n/2. Apparently, the underlying random processes

NRk, NIk, SRk and SIk, k=O, ... n/2, are mutually-independent,

zero-mean, normally-distributed, and nearly band-limited white

noise.

When noise is present in the input and response readings,

Equation 4.1 cannot be established since the noise-free values of

Fk and Zk, k=O, ... n/2, will not be known. Rather, input and

response functions including noise will be used to form the

ratio, and Equation 4.1 will be replaced by
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Qk k 2 k=O, ... n/2. (4.10)

IZk - (SklW )I

(The -w2 term is included in the denominator since zX + s, X=O,
n-i, is measured and its OFT is -w2 k + n

We wish to know the minimum value in IFk1 2/IZk12, but when noise

is present, we must estimate this using Q . Q is a random vari-

able since it is a function of the random variables, Nk and

Sk. Since the parameter ao will be estimated using the minimum

value of Q , the estimator for a0 is a random variable. Its

probability distribution is a function of the probability dis-

tribution of QO. The probability distribution of Q is quite

complicated because of the form of its functional dependence on
Nk and Sk. However, the moments of Q can be easily estimated.
The first step toward accomplishing this task is to compute the

moments of the numerator and denominator of Qk"

Consider the numerator in Equation 4.10. Its mean and vari-
ance can be found using the Expressions 4.8. Note that Fk has

been assumed a nonrandom (though unknown) constant. The mean of

IFk + Nk1 2 is the expected value of Fk + Nk times its complex

conjugate. This is

E[IFk + Nk 2] = IFk 2+ non 2 At2 , k=O, ... n/2. (4.11a)

The variance of IFk + Nk12 is the mean square of 'Fk + NkI 2 minus

the square of the mean. This is

V[lFk + NkI 2 = n2On 4 At4 + 2nOn2 At2 IFkj 2

+ 26ko nan2 At2(FRg + Fi2), k=O, ... n/2

(4.11b)
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where Sko is the Kronecker delta. The mean and variance of the

denominator of Equation 4.10 can also be found and these are

22 2 2 2 4E[IZk - Sk/WkI ] = IZkJ + nos at /wk, k=O, ... n/2 (4.12a)

V[IZk - 22 n2  4A4 8 + 2nAt 212/w4

Sk/wki ~ s 'k Ow kIk

+ 2 6ko nos2 At2 (ZR2 + Z12)/w4, k=O, ... n/2

(4.12b)

So far, the moments established in Equations 4.11 and 4.12 are

exact, given the assumptions concerning nt and st, 1=O,

n-i, listed previously. We now form approximations for the

moments of Q in Equation 4.10.

Recall that if X and Y are independent random variables and

if Z is defined as the ratio of these, then the first two moments

of Z can be approximated. Let

z = X/Y. (a)

Then

E[Z] = ECX]/E[Y] (b)

V[Z] ) ((E[X]) 2 V[Y] + (E[Y])2 V[X])/(E[Y])4  (c)

Based on these formulas, the approximate values for the mean and

variance of Q can be written

E[Q] E[IF k + NkI /[Zk 2], k=0,1, ... n/2

(4.13a)
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and

2 2 2 22 2 2

E[IFk+NkI 2 } V[IFk+Nk; ]+{E[IZk-Sk Wkj 11 V[/Z kS /W2 2 ]
V[Qk] 224I

{E[IZk-Sk/wkI 11

k=O, ... n/2.

(4.13b)

These moments characterize the distribution of Q , k=O, ... n/2,

but do not completely define it. As mentioned above, the dis-

tribution of Q is quite complicated. For the purposes of this

approximate analysis, however, we can assume that Q has a dis-

tribution which takes a relatively simple, common form. We as-

sume Q to be normally distributed. Then the distribution of

is fully described by E[Q ] and V[Q1 ]. With this assumption, the

analysis can proceed.

The estimated value of the parameter ao depends on the mini-

mum value of Qk, k=O, ... n/2. Let am be the frequency where Q

assumes its minimum. Then we can write

P(Qm wk) = P(Qk is the smallest of the values

Q! , j=O, ... n/2)

=P( nl Q ( QP)
j k

= P( n Q, - QJ o) k=O, ... n/2

j ~k

(4.14)
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Here jk Q _ simply refers to the joint event where Q; is

equal to or less than each Q!., jk. The last step simply rear-
J

ranges the inequality. Equations 4.8 and 4.9 show that the ran-

dom variables Q and Q are independent when j~k. Therefore,

Equation 4.14 can be written

P(am = wk) =TT P(Q - Qt< 0)

j*k

=-QTFo Q.(O) k=O, ... n/2

j~k

(4.15)

where FQk _ Qt(x) is the cumulative distribution function of Q -

Q!. (Since Q is assumed normally distributed, then Q - Qt will

also be normally distributed.)

Finally, Equation 3.27 in Section 3 establishes the formula

for a 0 as

ao= m2 (4.16)

In terms of this formula, the probability distribution for the

estimator of ao is

P(AP(m V )  a = mwk, k=o, ... n/2

0 otherwise

(4.17)

where Ao is defined as the random variable used to estimate aO.

This formula provides an approximate probabilistic description of
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the character of the estimator A0. We expect that when the func-

tion Q', k=O, ... n/2, has a pronounced trough near its minimum,

the probability distribution of Ao will be tightly concentrated

around mw2 . When k=O, ... n/2, is relatively shallow, themk
distribution of Ao may show considerable spread.

In order to establish confidence intervals on the underlying

value of ao, a probability relation between the underlying value

and its estimator, A0 , must be established. This relation can be

solved for ao to establish confidence intervals on a0 . For the

approximate purposes of this analysis, we simply assume that Ao

is a normally-distributed random variable with mean ao. (The as-

sumption that Ao has mean ao is not exactly correct, as may be

noted from Equation 3.26.) Then confidence intervals on the un-

derlying constant, ao, can be written

22+b a=2(b-1 b>
C(mw- b ~a± a0 < + b 0a) = 2 0(b) -1 b >0

(4.18)

where A2 is the estimated variance of Ao obtained using EquationOa
4.17, t(o) is the standard, normal cumulative distribution func-

tion; and b is a constant related to the confidence level of the

established intervals. This concludes the error analysis on the

parameter ao. The error analysis on aj, j=1, ... M+1, can now

be performed.

Error analysis on the variable a, will be performed for the

case where M1=O. This analysis will be conditioned on our know-

ledge of the value (or estimate) of ao. This approach is taken

since Equations 3.28, 3.29, and 3.34 through 3.40 rely on this

knowledge of ao. When noise is present in the structural input

and response measurements, the formula used to estimate a, be-

comes
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_- W Q; wk M w2 ) w}
k k k

(4.19)

The random variable Q has replaced Qk in Equation 3.29; there-

fore, A2 is the random variable estimator for the underlying1
parameter aI. The mean and variance of A1, conditioned on 80,

can be established based on the mean and variance of Q given in

Equations 4.13. These are

E[AIa0  ( 4  E[Q 1w m(wm2 w2) 2 w2
E1 {o 01 C wk  k {k E[ (m k I ,

k k k

(4.20a)

2 4 -24

V[Ajjlao] Z Wk) IF, V[Q] Wk } (4.20b)

k k

With this information, an approximate conditional probability

distribution for A2 given ao can be established. We take the

conditional distribution of A2 to be normal with the mean and0
variance listed above. Using these assumptions, the confidence

intervals on a2 can be written

C(E[AlIao] - bV[A 1I ao] a < E[AI ao] + b;VV[A ao] ao)

20(b) 1 b > 0

(4.21)

For various values of b, and using the estimated moments of Equa-

tions 4.20, Equation 4.21 sets the confidence limits for a2.
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We now perform an error analysis on the variables a and a2

for the case where M=1. As above, we condition our analysis on

knowledge of the value of ao. Equation 3.40 establishes an ex-

pression for the two-dimensional vector {b}. Its elements, b,

and b2 , are simply related to a, and a2, so we concentrate our

preliminary analysis on {b}. When the value of a0 is specified,

the matrix [XI] in Equation 3.40 is known. When Q replaces Qk

in Equation 3.38c, {b} must be replaced by a random vector. We

perform the specified replacement to obtain

{B} = [R] {Xj} (4.22)

where {B} is the estimator random vector for {b}, {Xj} is the

vector whose form is Equation 3.38c with Qk replaced by Q , and

- ]T
[R] = ([X IT -X1])  TX1  (4.22a)

where [XI] is defined in Equation 3.38b. The conditioned mean

value of {B} is

E[{B}ao] -- [R] E{Xj} (4.23)

where

E ' 2 2E[Q i 2  
-2

1 (wm wk)

E{Xk} = kQ 2 2 +l) (4.23a)

E[Q 2] -2 W k wk )2

2 m2Cwm2 - wk22

The expression for E[Q ] is given in Equation 4.13a. Equation

4.23 provides the mean value of B1 and B2, given ao.
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The conditioned covariance matrix for {B} is obtained using

the following procedure: 1) Find the mean value of the product

{B} {8 }T. This is done using Equations 4.22, 3.38c and 4.13,

and by noting that Q and Q are independent for k*j. 2) Sub-

tract from this the product E[{B}I ao] (E[{B}I ao])T. The re-

sult is

[KBBlao [R] [K] [R]T (4.24)

where the diagonal elements of [K] are the variances of the ran-

dom variables Q , k=kl, ... k2, and the off-diagonal terms are

zero.

V[Q ] 0 ... 0

o V[Q +11 ... 0
[K] 1 (4.24a)

o 0 V[Q2 I
21_

The diagonal elements in [KBBja0] are the variances of B1 and

B2, given ao. Equations 4.23 and 4.24 define the first- and

second-order moments of {B}. These can be used to establish the

moments for the estimators of ai and a2.

Let Ai be the random variable of the estimator a., j=1,2.

Then, according to Equation 3.41, we can write

A= Big A~ 2 B 2/B (4.25)

The conditional moments of A2 can be obtained by directly taking

the mean and variance on both sides of the first of Equations

4.25.
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E[Aj ao] = E[B1 lao] (4.26a)

V[Aao] = V[B I lao] (4.26b)

The moments on the right-hand side are defined in Equations 4.23

and 4.24. The moments of A2 must be approximated since the2ex-
pression for A2 involves a ratio and a power of B1 and B2. Using

Equations a, b and c, listed previously in this section, we can

show that the conditional moments of A2 are approximately
2

E[A2 I ao] - E[B2 ao]/E[B1 I ao] (4.27a)

22 2 2

(E[B 2 aol) V[B1 I ao] + (E[B1  ao]) 2 V(B 2 ao)
V2  2ao] 4V[A (A 2ao] =(E[B 1 l ao]) 4

(4.27b)

where

2 2
E[B2 f ao] = V[B2 1 ao] + (E[B 21 ao]) (4.27c)

2 2
V[B 2  ao] = 3(V[B2 1 ao]) (4.27d)

The moments in Equations 4.27c and 4.27d can be obtained directly

from Equations 4.23 and 4.24. These can be used to establish

Equations 4.27a and 4.27b. Equation 4.27d uses the normal ap-

proximation to estimate the variance of B
2

When we establish the relation between each underlying pa-

rameter, aj, and its estimator random variable, Aj, j=1,2,

and when we find the probability distribution of the Aj, j=1,2,
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we can write confidence intervals on the aj. For the approxi-

mate purposes of the present analysis, we simply assume that the

A?, j=1,2, are normally-distributed random variables. Then the

confidence intervals on the aj, j-1,2, can be written

C(E[A ao] - cV[A27ao] < ai < E[Aj I ao] + cjV[A2 1a O ] )

= 20(c) - 1, j=1,2, c > 0 (4.28)

This formula reflects our confidence that a? falls within
c as

+ C1V[A'I a0] of its estimated value.

Equations 4.18, 4.21, and 4.28 establish confidence inter-

vals on the parameters aj, j=0,1,2. The confidence intervals

on a, and a2 are actually conditioned on the value of ao. These

could be made unconditional by deriving them from the joint prob-

ability distribution for A0 , A,, and A2. This joint distribution

could be obtained by multiplying the conditional distribution of

A1 and A2 by the distribution of A0. But this was not done in

the present analysis for the following reason. The separation of

the error analysis into two sequential parts follows the approach

used in the parameter identification of Section 3. First, the

value of ao is estimated. Then this value is used in the identi-

fication procedure to find a1 and a2.

Simplifying and approximating assumptions reqarding the dis-

tributions of the parameter estimators, A0, A1 , and A2, have been

made freely throughout this analysis. These assumptions cer-

tainly affect the accuracy of this error analysis, but we feel

that useful results can still be obtained using the formulas pre-

sented here. In particular, when the variance of the noise on

the measured structural input and response are small, we expect

that the analyses of this section will be accurate.

The error analysis for the time domain approaches to param-

eter identification are not included in this report for two rea-

sons. 1) The time domain analyses developed in this report yield
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results which are more sensitive to the presence of noise than

the frequency domain approaches. Therefore, these approaches

will be less useful to us in practice. 2) The time domain error

analyses are quite difficult to implement in a practical computa-

tion scheme.

5.0 Numerical Examples

In this section, numerical examples are presented which dem-

onstrate the use of the analytic procedures developed in the pre-

vious sections. Two examples demonstrating the time domain ap-

proach to parameter identification are summarized. One example

showing the frequency domain approach is presented. The examples

demonstrate the identification of the model parameters for linear

and hysteretic, single-degree-of-freedom (SDF) structures, both

when measurement noise is and is not present.

The input used to excite the SDF systems in all the numeri-

cal examples is a decaying exponential, oscillatory function. It

is generated using the formula

N
f(t) = e" t [1: cj cos(wjt - *j)], 0 < t < T. (5.1)

j=1

a, cj, j=1, ... N, and wj, j=1 .... N, are constants. 0j, j=1,

... N, are phase angles which are random variable realizations;

the underlying random variables are independent and uniformly

distributed on the interval (0, 27r). a is the input decay rate.

The cj, j=1, ... N, are constants determining the amplitudes of

input components. In all cases described below, all the values

of the cj are taken as equal to c. wj, j=1, ... N, are the

frequencies where the input components are generated. In all ex-

amples shown here, the wj, j=1, ... N, are equally spaced in an

interval including the characteristic frequency of the system be-

ing analyzed. The forcing function defined above was generated
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at discrete times for use in the numerical examples. Specifi-

cally, f(t) was evaluated at the times t = tj = LUt, L=O, ...

n-i. A computer program, named FORCE, which generates the inputs

of Equation 5.1 was used in these numerical examples.

It was necessary to compute both linear and hysteretic, SDF

structure responses in the examples. This was done using an in-

cremental equations approach, described, for example, in Refer-

ence 8. A computer program, named BILIN, was written to execute

the structural response computations. BILIN can be used to find

the displacement, velocity, and acceleration response of a bi-

linear hysteretic structure to an arbitrary input. It also com-

putes the energy dissipated by the structure during its re-

sponse.

Two basic approaches for solving the parameter identifica-

tion problem were proposed in this study. These are the time do-

main and frequency domain approaches. Two computer programs were

written to execute the parameter identifications. These are

named TIMEID and FREQID. TIMEID performs time domain parameter

identification. It accepts an input signal from FORCE and a com-

puted response from BILIN and then does one of two things. It

either submits the data for an immediate parameter identifica-

tion, or it adds white noise to the input and/or output, and then

submits the data for parameter identification. The program can

perform the parameter identification directly using Equations 3.4

through 3.12, or it can perform the identification using the in-

tegrated equations approach, Equations 3.13 through 3.18. The

program can identify the parameters of the second-order model

(M=O) or the third-order model (M=I) of Equation 3.4.

The computer program FREQID performs frequency domain param-

eter identification. It accepts an input signal from FORCE and i

computed response from BILIN. If desired, FREQID next adds white

noise signals to the input and/or response. Then it performs the
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necessary Fourier transforms and other data operations. Follow-

ing this, the parameter identification is executed. Equations

3.19 through 3.41 are used. The program can identify the param-

eters of the second-order model (M=O) or the third-order model

(M=1) of Equation 3.4.

Once the parameters of Equation 3.4 have been estimated, the

energy dissipated by the model is computed; and this is compared

to the energy dissipated by the actual system, as computed in

BILIN. This computation is the one discussed in Section 2 and

given by Equation 2.5b. The energy computations are performed in

programs ENEDlO, for second-order systems, and ENED13, for third-

order systems. The computations are performed using an incremen-

tal form of the governing Equation 3.4.

The notations for the parameters used in specifying the nu-

merical examples are those used in the text. Some additional

notations are defined here. c is the viscous damping in an SDF

system. k is the initial stiffness in a bilinear hysteretic

structure. ky is the yield stiffness of a bilinear hysteretic

structure. Zy is the yield displacement of a bilinear hyster-

etic structure. Zmax is the maximum displacement of an SDF

structure.

In the following numerical examples, four basic problem

types are solved. These are summarized below.

(1) An input is generated using Equation 5.1. The input is used

to excite a linear SDF system with viscous damping. The

structural input and response are stored, and no noise sig-

nals are added to the input and response. Then the input

and response are used to identify the model parameters,

aj, j=O, ... 14+1, from Equation 3.4.

(2) An input is generated as in 1, above, but here the response

of a bilinear hysteretic system is computed. No noise sig-

nals are added to the input and response. The input and re-

sponse are used to identify the model parameters, aj, j=O,

M+I.
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(3) This case is the same as 1, above, but here noise signals

are added to the input and response. Then the parameters

aj, j=O, ... M+1 are identified.

(4) This case is the same as 2, above, but here noise signals

are added to the input and response. Then the parameters

aj, j=O, ... M+1 are identified.

In all four cases, the parameters of the second-order model, ao

and a, (M=O), and the third-order model, ao, a,, and a2 (M=1),

are identified. Moreover, the energy dissipated by the model

system with the identified parameters is computed.

5.1 Example 1

This example solves a parameter identification problem using

the direct time domain approach, summarized in Equations 3.4

through 3.12. The parameters of the shock input are listed in

Table 5.1. A typical forcing function history generated using

these parameters is shown in Figure 5.1a. The derivative of the

forcing function is shown in Figure 5.1b.

The responses of some SOF systems to the shock input in Fig-

ure 5.1a were computed. First, the response of a linear system

was computed for anilysis in cases 1 and 5. The computed dis-

placement response is plotted versus time in Figure 5.2a. The

SDF structure spring restoring force versus displacement is

plotted in Figure 5.2b. The very slightly nonlinear response of

an SDF structure was computed for analysis in cases 2 and 6, but

this response is not shown. A more nonlinear response was com-

puted for analysis in cases 3 and 7. The displacement response

versus time is plotted in Figure 5.3a, and the spring restoring

force versus displacement is shown in Figure 5.3b. The first

figure shows a residual plastic displacement as the response vi-

brations diminish. The second graph shows the permanent set as

lateral displacement of the horizontal axis intercept. Finally,

a very nonlinear response was computed for analysis in cases 4
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Figure 5.1a. Decaying exponential forcing function
for Example 1
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Figure 5.1b. Derivative of forcing function in

Figure 5.1a
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Figure 5.2a. Response of a linear system to the force in
Figure 5.1a. k 0
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Figure 5.2b. Spring restoring force versus displacement
for linear system
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Figure 5.3a. Response of nonlinear system to the force in
Figure 5.1a. k = 7000
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Figure 5.3b. Spring restoring force versus displacement
for nonlinear system
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Table 5.1. Parameters and Results for Example 1

Input (Structural Excitation)

Case Number. N _ c Wl WN n At

1 through 8 50 1.0 300 32.4 1256.4 256 0.005

Structure Parameters

Case Number m c k ky Z

1,5 0.259 7.77 5829 - m 23292
2,6 0.259 7.77 5829 0 7700 23588
3,7 0.259 7.77 5829 0 7000 23674
4,8 0.259 7.77 5829 0 5000 21959

Identification Parameters and Results

Case Number M a. a, a2 ED

1 2 5829 7.77 21533
2 2 5825 7.79 21533
3 2 4574 8.13 21779
4 2 1620 9.69 23844
5 3 5829 7.77 0.0 21533
6 3 5823 7.85 0.0 21498
7 3 2527 99.65 0.0158 20824

8 3 610 108.11 0.0175 18666

and 8. The displacement response versus time is shown in Figure

5.4a and thi cpting restoring force versus displacement is shown

in Figure 5.4b. A considerable permanent set is evident, as the

motion diminishes, from the first figure. The second figure

shows that large plastic deformations occur in the structure in

both directions of motion.

The energy dissipated by each structural system is listed

with the structural parameters in Table 5.1. ED is that energy

dissipated due to the action of the inelastic spring and the ac-

tion of the viscous damper.
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Figure 5.4a. Response of nonlinear system to the force in
Figure 5.1a. ky= 5000
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Figure 5.4b. Spring restoring force versus displacement
for nonlinear system
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Using the forcing function input, described above, and the

computed responses, the parameters of the structural systems were

identified. The results of the parameter identifications are

given in Table 5.1. The energy dissipated when the identified

systems respond to the shock input is listed in Table 5.1 next to

the identified parameters.

Figures 5.5a through 5.9b show the computed responses of

some of the identified systems. The figure titles indicate which

systems generate the responses shown. The top (or "a") figures

show the computed responses versus time. The bottom (or "b")

figures show the computed restoring forces, spring force plus

damper force, versus displacements.

Figure 5.10 compares three responses. These are: 1) the

actual nonlinear structural response obtained using BILIN in the

slightly nonlinear cases 2 and 6, 2) the response executed by the

identified model described in case 2, and 3) the response exe-

cuted by the identified model described in case 6. The two lat-

ter responses practically overlay and very nearly equal the ac-

tual response.

Figure 5.11a compares the actual nonlinear response of cases

3 and 7 to the second-order (M=O) model response of case 3. Fig-

ure 5.11b compares the actual nonlinear response of cases 3 and 7

to the third-order (M=1) model response of case 7. Both models

simulate response amplitudes quite well; the third-order model is

slightly closer than the second-order model in that the third-

order model provides a slightly better phase match to the actual

response than the second-order model.

In this numerical example, no cases are included where noise

was added to the forcing function input and/or the acceleration

response. Such cases were analyzed, but the results were so poor

that they are not summarized here. These results showed that the

direct, time domain parameter identification technique is not

effective in parameter analysis when recording noise is present.
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Figure 5.5a. Displacement response of identified system to
force in Figure 5.1a. (Case 2)
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Figure 5.5b. Spring plus damper restoring force versus
displacement for identified system. (Case 2)
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Figure 5.6a. Displacement response of identified system to
force in Figure 5.1a. (Case 3)
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Figure 5.6b. Spring plus damper restoring force versus

displacement for identified system. (Case 3)
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Figure 5.8a. Displacement response of identified system to
force in Figure 5.1a. (Case 7)
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Figure 5.9a. Displacement response of identified system to
force in Figure 5.1a. (Case 8)
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Figure 5.9b. Total restoring force versus displacement for
identified system. (Case 8)
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Figure 5.10. The comparison between measured response (light
line) and identified response (dark line) for
both second-order (case 3) and third-order (case 7)
approximate systems. (The identifie'. responses
are practically the same.)
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Figure 5.11a. The comparison between measured response
(light line) and identified response for
second-order system. (Case 3)
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Figure 5.1lb. The comparison between measured response
(light line) and identified response for
third-order system. (Case 7)
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The numerical examples summarized here show that the direct,

time domain parameter identification technique can be used effec-

tively when the measured signals are noise free. This is best

confirmed by reference to Figures 5.10, 5.11a, and 5.11b. These

show that the linear model response can be made to match the non-

linear response well.

The energy dissipation results, summarized in Table 5.1,

show that the third-order models provide the best simulation for

a nonlinear hysteretic system.

5.2 Example 2

The parameter identification problem is solved in this exam-

ple using the time domain approach with the integrated equation

of motion. This approach was developed in Equations 3.13 through

3.18. The forcing function input used to excite the systems in

this example is the same one used in Example 1. The forcing

function parameters are listed in Table 5.2. In the present

case, though, the time increment where the forcing function was

evaluated is At = 5 x 10- 5 sec. It was found, in working several

numerical examples, that a time increment of extremely small mag-

nitude, relative to the natural period of the system under inves-

tigation, is necessary to make the system identification work

when noise is present in the inputs and outputs.

The structural systems analyzed in the 6 cases of the pres-

ent numerical example are summarized in Table 5.2. The response

of a linear system was computed for analysis in cases 1 and 4.

The responses of moderately and strongly nonlinear systems were

computed for analysis in cases 2 and 5 and cases 3 and 6, respec-

tively.

In all cases in this numerical example, noise was added to

the generated forcing function input and the measured accelera-

tion response. The standard deviations of the band-limited,

white noise, random processes added to the inputs and responses

are given in Table 5.2. Figures 5.12a and 5.12b show segments of
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Figure 5.12a. Noisy and noise-free forcing function signals.
The noisy signal is used in Example 2.
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Figure 5.12b. Noisy and noise-free acceleration response
signals. The noisy signal is used in Example 2.
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Table 5.2. Parameters and Results for Example 2

Input (Structural Excitation)

Case Number N 0 c Wl WN n at

1 through 6 50 1.0 300 32.4 1256.4 256 5xi0 "5

Structural Parameters

Case Number m c k k Z ED

1,4 0.259 7.77 5829 - a 22.7
2,5 0.259 7.77 5829 0 2000 22.7
3,6 0.259 7.77 5829 0 1000 22.7

Noise Parameters

Case Number af I's

1 through 6 150 475

Identification Parameters and Results

Case Number M ao a, a2  ED

1 2 5809 7.89 22.8
2 2 4526 14.20 26.5
3 2 1563 18.19 24.6
4 3 5737 9.11 0 24.1
5 3 3851 70.79 0.00141 28.9
6 3 1056 18.50 0.00147

the generated forcing function and the computed acceleration

response with noise added. A typical segment of the white noise

realization added to the input and response is shown, alone, in

Figure 5.12c.

Parameter identifications were executed using the noisy in-

puts and responses summarized above. The results are listed at

the bottom of Table 5.2. Comparison of the actual values for

energy dissipated and the identified values for energy dissi-

pated, in Table 5.2, shows that the identified models provide a

reasonable estimate for energy dissipated in the actual system.
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Figure 5.12c. Typical white noise signal used in numerical I
examples
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The capability to establish such an estimate in the presence of

noise provides an improvement over the parameter identification

method used in Example 1.

5.3 Example 3

In this example, a parameter identification problem is

solved using the frequency domain approach, developed in Equa-

tions 3.19 through 3.41. The shock input used in this example is

a decaying exponential, oscillatory input. The input parameters

are listed in Table 5.3. These parameters are the same for all

eight cases worked in this example. A forcing function generated

using the Table 5.3 parameters is shown in Figure 5.13a. Param-

eter identifications were performed both when noise was and was

not present on the forcing function input. The standard devia-

tions of the noise random processes for all eight cases worked in

this example are listed in Table 5.3. Note that cases 2, 4, 6

and 8 are noisy; cases 1, 3, 5 and 7 are not noisy. The forcing

function input with a white noise superimposed on it is shown in

Figure 5.13b.

Two structural responses to the input of Figure 5.13a were

computed. The first response was for a linear, SDF system; the

structure parameters are listed in Table 5.3. This response was

used in example cases 1, 2, 5 and 6. The second response was for

a bilinear hysteretic system; the structural parameters are

listed in Table 5.3. This response was used in example cases 3,

4, 7 and 8. The acceleration response of the nonlinear system is

shown in Figure 5.14a. Parameter identifications were performed

both when noise was and was not present on the acceleration re-

sponse. The standard deviations of the white noise random pro-

cesses are listed in Table 5.3 for all 8 cases. Figure 5.14b

shows the nonlinear acceleration response from Figure 5.14a with

a measurement white noise superimposed. Figure 5.15 shows the

graph of restoring force (spring plus damper forces) versus dis-

placement.
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Table 5.3. Parameters and Results for Example 3

Input (Structural Excitation)

Case Number N L c W1 WN n at
1 through 8 50 0.025 1.0 0.8 1.2 1024 0.3

Structure Parameters

Case Number m c k k Zy Zma x  ED

1,2 1.0 0.2 1.0 - - 12.5 513.1
3,4 1.0 0.2 1.0 0.5 10.0 12.7 532.6
5,6 1.0 0.2 1.0 - - 12.5 513.1
7,8 1.0 0.2 1.0 0.5 10.0 12.7 532.6

Noise Parameters

Case Number af CIS
1 0.0 0.0
2 0.2 0.5
3 0.0 0.0
4 0.2 0.5
5 0.0 0.0
6 0.2 0.5
7 0.0 0.0
8 0.2 0.5

Identification Parameters and Results

Case Number M ao a, a2 ED

1 2 .9458 .1902 544.8
2 2 1.010 .2660 452.5
3 2 .9214 .1617 590.2
4 2 .9074 .1374 644.1
5 3 .9458 .3116 .08083 501.9
6 3 .9270 .2825 .06461 519.6
7 3 .9214 .2293 .02744 543.1
8 3 .9074 .2196 .02430 554.6
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Figure 5.13a. Signal used to simulate the actual forcing
function for an SDF system in Example 3
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Figure 5.13b. Signal used to simulate the measured forcing
function for an SDF system. (Includes noise.)
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Figure 5.14a. Acceleration response of nonlinear SDF system
to force in Figure 5-13a
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Figure 5.14b. Signal used to simulate measured acceleration
response. Signal of Figure 14a plus noise.
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Figure 5.15. Total restoring force of nonlinear system versus

displacement. (Cases 3, 4, 7 and 8)
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The energy dissipated by the structure in each case of the

numerical example is listed in Table 5.3 under the heading
"Structural Parameters."

Parameter identifications were performed for the eight cases

described above. The identified parameters are listed at the

bottom of Table 5.3. The energy dissipated by each of the iden-

tification systems is listed next to the identified parameters.

Figures 5.16a and 5.16b show comparisons of the responses

computed from the identified linear models to the nonlinear

response of cases 3, 4, 7 and 8. Figure 5.16a compares the

second-order model (M=O) response to the actual response. Figure

5.16a compares the third-order model (M=1) response to the actual

response. The plots show that the third-order model provides a

better visual match to the actual response than the second-order

model. However, both linear models provide a good simulation of

the nonlinear response.

Figures 5.16a and 5.16b make it apparent that the frequency

domain parameter identification technique provides acceptable

results, at least in those cases considered here.

The results show that the third-order model is preferable to

the second-order model for estimation of the energy dissipated by

the nonlinear response.

6.0 Discussion and Conclusions

The main objective of this investigation was to establish a

method for measuring the damage accumulation in structures. We

assumed that structural damage is related to the energy dissi-

pated during a strong motion event and attempted to identify this

quantity.

The estimate for energy dissipated by a structure was ob-

tained by identifying the parameters for a model of the damaged

structure, then using the model to compute the energy dissipated

during the strong motion event. The model chosen to simulate the
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Figure 5.16a. The comparison between noise-free response
(light) and third-order identified response.
(Parameters from case 8)

15.0

' 9.0

U

0i-.0 I

-15.0
0.0 120.0 300.0

TIME -SEC

Figure 5.16b. The comparison between noise-free response

(light) and second-order identified response.I
(Parameters from case 4)
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response of the damaged structure is a system of linear differen-

tial equations. Specifically, second- and third-order, linear,

ordinary, differential equations were used to model the motions

of single-degree-of-freedom (SDF) hysteretic systems.

The parameters of the model were estimated using three ap-

proaches. Two of these approaches are time domain least squares

approaches where the modeling error is minimized with respect to

the measured data. The other is a frequency domain least squares

approach.

Many numerical examples were solved, and some of them are

summarized in this report. Experience obtained in solving the

numerical examples leads to the following conclusions.

(1) Linear and nonlinear hysteretic single-degree-of-

freedom (SDF) system responses can be accurately mod-

eled using second- and third-order linear equations.

(2) A direct, time domain approach can be used to identify

model parameters when the force input and acceleration

response measurements are not noisy.

(3) A time domain approach using integrated equations of

motion can be used to identify model parameters when

the input and response measurements are noisy. How-

ever, an accuracy requirement forcing At to be very

small when this approach is used reduces the effective-

ness of this method.
(4) A frequency domain approach t3 the identifization of

SOF system parameters is most effective in the present

application. It can be used when measurement noise is

present in the input and response and leads to accurate

results.

(5) The third-order, linear model is preferable to the

second-order model in at least two respects. 1) The

third-order model provides a better match to the non-

linear SOF system response than the second-order

73

.. . . .. . . . . . . . .. " .. . .



/m

model. 2) The third-order model provides a better es-

timate of energy dissipated by the nonlinear system

than the second-order model.

The present approach to frequency domain parameter identifi-

cation and estimation of energy dissipated by a hysteretic SDF

system yields accurate results. However, the degree of accuracy

in the present analysis can be improved. In particular, the

present analytical approach would be improved by introduction of

a numerical search procedure for location of the system param-

eters which correspond to a least squares solution. Such a

change in the analysis would eliminate the need for the simplify-

ing assumptions used in this study.

Future investigations should attempt to improve the models

established in this study and consider more complicated systems.

The models considered in this study can be made more elaborate

and, possibly, more accurate. For example, linear models with

time varying parameters can be considered; and nonlinear models

can be considered. (The drawback in the use of nonlinear models

is that the frequency domain analysis can no longer be used.)

The analysis of energy dissipated in two-degree-of-freedom struc-

tures should be pursued.

Future studies should include numerical examples of error

analysis. The present investigatiop derived the equations for

error analysis, but no numerical computations of confidence in-

tervals were included in the examples.
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